Birzeit University
Department of Physics
Physics of vibrations and waves, Phys236
Spring 2019
Homework 1: Due date Feb. 25th 2019

The figure below shows a thin uniform rod of mass M and length 2L that is pivoted without friction about an axis through its mid point. A horizontal light spring of spring constant s has one end attached to the lower end of the rod,

1. and the other end to a fixed wall. The spring is at its equilibrium length when the angle θ with respect to the vertical is zero. Show that for oscillations of small amplitude, the rod will undergo SHM with a period of $2 \pi \sqrt{\frac{M}{3 s}}$.

2. A particle oscillates with amplitude A in a one-dimensional potential $U(x)$ that is symmetric about the origin, and that $\mathrm{U}(0)=0$.
(a) Show that the velocity v of the particle at position x is given by

$$
v=\sqrt{2[U(A)-U(x)] / m}
$$

(b) Show that the period of oscillation T is given by

$$
T=\sqrt{\frac{8 m}{U(A)}} \int \frac{d x}{\sqrt{1-U(x) / U(A)}}
$$

(c) If the potential $\mathrm{U}(\mathrm{x})$ is given by $U(x)=\alpha x^{n}$ where α is a constant and $\mathrm{n}=2,4,6, \ldots$, obtain the dependence of the period T on the amplitude A for different values of $\mathrm{n}=2,4, \ldots$.
3. For a body in stable equilibrium, the net force acting on it is zero. If a body is displaced a distance x away from the position of stable equilibrium the force F will be of opposite sign to x . The force can be written as:

$$
F=\sum_{i=0}=C_{i} x^{i}
$$

where C_{i} is a negative constant. For small oscillations about the origin, $\mathrm{F}=$ ma becomes

$$
C_{1} x=m d^{2} x / d t^{2}
$$

Comparing this with the standard equation for simple harmonic motion,

$$
C_{1}=-(d F / d x)_{0}=-[d(-d U / d x) / d x]_{0}=\left(d^{2} U / d x^{2}\right)_{0}
$$

Suppose the potential energy in a diatomic molecule can be expressed as the sum of an attractive term b / r^{3} and a shorter-range repulsive term a / r^{5}, that is, $U=\left(a / r^{5}\right)-\left(b / r^{3}\right)$.
(a) The equilibrium position r_{o}.
(b) The spring constant s between the two atoms
(c) The vibrational frequency of this diatomic molecule if each atom has a mass m .

